Extensions 1→N→G→Q→1 with N=C28 and Q=C23

Direct product G=NxQ with N=C28 and Q=C23
dρLabelID
C23xC28224C2^3xC28224,189

Semidirect products G=N:Q with N=C28 and Q=C23
extensionφ:Q→Aut NdρLabelID
C28:C23 = C2xD4xD7φ: C23/C2C22 ⊆ Aut C2856C28:C2^3224,178
C28:2C23 = C22xD28φ: C23/C22C2 ⊆ Aut C28112C28:2C2^3224,176
C28:3C23 = D7xC22xC4φ: C23/C22C2 ⊆ Aut C28112C28:3C2^3224,175
C28:4C23 = D4xC2xC14φ: C23/C22C2 ⊆ Aut C28112C28:4C2^3224,190

Non-split extensions G=N.Q with N=C28 and Q=C23
extensionφ:Q→Aut NdρLabelID
C28.1C23 = D7xD8φ: C23/C2C22 ⊆ Aut C28564+C28.1C2^3224,105
C28.2C23 = D8:D7φ: C23/C2C22 ⊆ Aut C28564C28.2C2^3224,106
C28.3C23 = D8:3D7φ: C23/C2C22 ⊆ Aut C281124-C28.3C2^3224,107
C28.4C23 = D7xSD16φ: C23/C2C22 ⊆ Aut C28564C28.4C2^3224,108
C28.5C23 = D56:C2φ: C23/C2C22 ⊆ Aut C28564+C28.5C2^3224,109
C28.6C23 = SD16:D7φ: C23/C2C22 ⊆ Aut C281124-C28.6C2^3224,110
C28.7C23 = SD16:3D7φ: C23/C2C22 ⊆ Aut C281124C28.7C2^3224,111
C28.8C23 = D7xQ16φ: C23/C2C22 ⊆ Aut C281124-C28.8C2^3224,112
C28.9C23 = Q16:D7φ: C23/C2C22 ⊆ Aut C281124C28.9C2^3224,113
C28.10C23 = Q8.D14φ: C23/C2C22 ⊆ Aut C281124+C28.10C2^3224,114
C28.11C23 = C2xD4:D7φ: C23/C2C22 ⊆ Aut C28112C28.11C2^3224,126
C28.12C23 = D4.D14φ: C23/C2C22 ⊆ Aut C28564C28.12C2^3224,127
C28.13C23 = C2xD4.D7φ: C23/C2C22 ⊆ Aut C28112C28.13C2^3224,128
C28.14C23 = C2xQ8:D7φ: C23/C2C22 ⊆ Aut C28112C28.14C2^3224,136
C28.15C23 = C28.C23φ: C23/C2C22 ⊆ Aut C281124C28.15C2^3224,137
C28.16C23 = C2xC7:Q16φ: C23/C2C22 ⊆ Aut C28224C28.16C2^3224,138
C28.17C23 = D4:D14φ: C23/C2C22 ⊆ Aut C28564+C28.17C2^3224,144
C28.18C23 = D4.8D14φ: C23/C2C22 ⊆ Aut C281124C28.18C2^3224,145
C28.19C23 = D4.9D14φ: C23/C2C22 ⊆ Aut C281124-C28.19C2^3224,146
C28.20C23 = C2xD4:2D7φ: C23/C2C22 ⊆ Aut C28112C28.20C2^3224,179
C28.21C23 = D4:6D14φ: C23/C2C22 ⊆ Aut C28564C28.21C2^3224,180
C28.22C23 = C2xQ8xD7φ: C23/C2C22 ⊆ Aut C28112C28.22C2^3224,181
C28.23C23 = C2xQ8:2D7φ: C23/C2C22 ⊆ Aut C28112C28.23C2^3224,182
C28.24C23 = Q8.10D14φ: C23/C2C22 ⊆ Aut C281124C28.24C2^3224,183
C28.25C23 = D7xC4oD4φ: C23/C2C22 ⊆ Aut C28564C28.25C2^3224,184
C28.26C23 = D4:8D14φ: C23/C2C22 ⊆ Aut C28564+C28.26C2^3224,185
C28.27C23 = D4.10D14φ: C23/C2C22 ⊆ Aut C281124-C28.27C2^3224,186
C28.28C23 = C2xC56:C2φ: C23/C22C2 ⊆ Aut C28112C28.28C2^3224,97
C28.29C23 = C2xD56φ: C23/C22C2 ⊆ Aut C28112C28.29C2^3224,98
C28.30C23 = D56:7C2φ: C23/C22C2 ⊆ Aut C281122C28.30C2^3224,99
C28.31C23 = C2xDic28φ: C23/C22C2 ⊆ Aut C28224C28.31C2^3224,100
C28.32C23 = C8:D14φ: C23/C22C2 ⊆ Aut C28564+C28.32C2^3224,103
C28.33C23 = C8.D14φ: C23/C22C2 ⊆ Aut C281124-C28.33C2^3224,104
C28.34C23 = C22xDic14φ: C23/C22C2 ⊆ Aut C28224C28.34C2^3224,174
C28.35C23 = D7xC2xC8φ: C23/C22C2 ⊆ Aut C28112C28.35C2^3224,94
C28.36C23 = C2xC8:D7φ: C23/C22C2 ⊆ Aut C28112C28.36C2^3224,95
C28.37C23 = D28.2C4φ: C23/C22C2 ⊆ Aut C281122C28.37C2^3224,96
C28.38C23 = D7xM4(2)φ: C23/C22C2 ⊆ Aut C28564C28.38C2^3224,101
C28.39C23 = D28.C4φ: C23/C22C2 ⊆ Aut C281124C28.39C2^3224,102
C28.40C23 = C22xC7:C8φ: C23/C22C2 ⊆ Aut C28224C28.40C2^3224,115
C28.41C23 = C2xC4.Dic7φ: C23/C22C2 ⊆ Aut C28112C28.41C2^3224,116
C28.42C23 = Q8.Dic7φ: C23/C22C2 ⊆ Aut C281124C28.42C2^3224,143
C28.43C23 = C2xC4oD28φ: C23/C22C2 ⊆ Aut C28112C28.43C2^3224,177
C28.44C23 = C14xD8φ: C23/C22C2 ⊆ Aut C28112C28.44C2^3224,167
C28.45C23 = C14xSD16φ: C23/C22C2 ⊆ Aut C28112C28.45C2^3224,168
C28.46C23 = C14xQ16φ: C23/C22C2 ⊆ Aut C28224C28.46C2^3224,169
C28.47C23 = C7xC4oD8φ: C23/C22C2 ⊆ Aut C281122C28.47C2^3224,170
C28.48C23 = C7xC8:C22φ: C23/C22C2 ⊆ Aut C28564C28.48C2^3224,171
C28.49C23 = C7xC8.C22φ: C23/C22C2 ⊆ Aut C281124C28.49C2^3224,172
C28.50C23 = Q8xC2xC14φ: C23/C22C2 ⊆ Aut C28224C28.50C2^3224,191
C28.51C23 = C7x2+ 1+4φ: C23/C22C2 ⊆ Aut C28564C28.51C2^3224,193
C28.52C23 = C7x2- 1+4φ: C23/C22C2 ⊆ Aut C281124C28.52C2^3224,194
C28.53C23 = C14xM4(2)central extension (φ=1)112C28.53C2^3224,165
C28.54C23 = C7xC8oD4central extension (φ=1)1122C28.54C2^3224,166
C28.55C23 = C14xC4oD4central extension (φ=1)112C28.55C2^3224,192

׿
x
:
Z
F
o
wr
Q
<